首页> 外文OA文献 >Coordinating the Initial Steps of Base Excision Repair: APURINIC/APYRIMIDINIC ENDONUCLEASE 1 ACTIVELY STIMULATES THYMINE DNA GLYCOSYLASE BY DISRUPTING THE PRODUCT COMPLEX*
【2h】

Coordinating the Initial Steps of Base Excision Repair: APURINIC/APYRIMIDINIC ENDONUCLEASE 1 ACTIVELY STIMULATES THYMINE DNA GLYCOSYLASE BY DISRUPTING THE PRODUCT COMPLEX*

机译:协调基础切除的初始步骤 维修:APURINIC / APYRIMIDINIC ENDONUCLEASE 1主动激发胸腺嘧啶 破坏产品的DNA糖基化酶 复杂*

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G·T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G·T (kcat = 0.00034 min-1) and G·U (kcat = 0.005 min-1) substrates, much slower than kmax from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in kcat for G·T, G·U, and G·FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G·T and G·U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111–308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.
机译:DNA糖基化酶可通过去除受损或错配的碱基来启动碱基切除修复,从而产生嘌呤/嘧啶(AP)DNA。对于许多糖基化酶,AP-DNA保持紧密结合,从而阻碍了酶的更新。胸腺嘧啶DNA糖基化酶(TDG)是一个突出的例子,它可以从G·T错配对中除去T,并识别其他损伤,对CpG二核苷酸的损伤具有特异性。 TDG的周转非常缓慢;随着[产物] / [酶]比例趋于一致,其活性似乎达到了平稳状态。随后的碱基切除修复酶,AP核酸内切酶1(APE1),刺激TDG和其他糖基化酶的周转,其机制尚不清楚。我们使用稳态前动力学和偶联酶(hTDG-hAPE1)荧光测定法,单独和与人APE1(hAPE1)一起检测了人TDG(hTDG)的催化活性。对于G·T(kcat = 0.00034 min-1)和G·U(kcat = 0.005 min-1)底物,hTDG周转非常慢,比单周转实验的kmax慢得多,这证实了AP-DNA的释放是限速的。我们发现G·T,G·U和G·FU底物的kcat差异出乎意料,表明被切除的碱基仍然被AP-DNA截留在产物复合物中。对于G·T和G·U底物,hAPE1将hTDG转化率提高了42倍和26倍,这是hAPE1作用的第一个定量度量。 hAPE1通过破坏产物复合物而不是(核酸内切地)消耗AP-DNA来刺激hTDG。对于hTDG催化核心(410的残基111-308)的增强作用更大,表明N和C末端域对于与hAPE1的刺激性相互作用是可有可无的。讨论了hTDG产品复合物的hAPE1破坏的潜在机制。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号